Home
Class 12
MATHS
If log sqrt(3)((|z|^(2)-|z|+1)/(2+|z|))g...

If log `sqrt(3)((|z|^(2)-|z|+1)/(2+|z|))gt2`, then the locus of z is

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(sqrt3) ((|z|^(2)-|z|+1)/(2+|z|)) gt 2 , then the locus of z is

If |z-1| = 2 then the locus of z is

If |z-1|=2 then the locus of z is

If log_(sqrt(3))|(|z|^(2)-|z|+1|)/(|z|+2)|<2 then locus of z is

If log_(sqrt(3))((|z|^(2)-|z|+1)/(2+|z|))>2, then locate the region in the Argand plane which represents z

If log_(sqrt3) |(|z|^2 -|z| +1|)/(|z|+2)|<2 then locus of z is

if |z+1|^(2)+|z|^(2)=4, then the locus of z is

If (log)_(sqrt(3))((|z|^2-|z|+1)/(2+|z|))>2, then locate the region in the Argand plane which represents zdot