Home
Class 11
PHYSICS
An ideal diatomic gas with C(V)=(5R)/(2)...

An ideal diatomic gas with `C_(V)=(5R)/(2)` occupies a volume `V_(1)` at a pressure `P_(1)`. The gas undergoes a process in which the pressure is proportional to the volume. At the end of the process the rms speed of the gas molecules has doubled from its initial value.
Heat supplied to the gas in the given process is

Promotional Banner

Similar Questions

Explore conceptually related problems

An ideal diatomic gas with C_(V)=(5R)/(2) occupies a volume V_(1) at a pressure P_(1) . The gas undergoes a process in which the pressure is proportional to the volume. At the end of the process the rms speed of the gas molecules has doubled from its initial value. The molar heat capacity of the gas in the given process is

An ideal diatomic gas with C_(V)=(5R)/(2) occupies a volume V_(1) at a pressure P_(1) . The gas undergoes a process in which the pressure is proportional to the volume. At the end of the process the rms speed of the gas molecules has doubled from its initial value. The molar heat capacity of the gas in the given process is

Molar heat capacity of an ideal gas in the process PV^(x) = constant , is given by : C = (R)/(gamma-1) + (R)/(1-x) . An ideal diatomic gas with C_(V) = (5R)/(2) occupies a volume V_(1) at a pressure P_(1) . The gas undergoes a process in which the pressure is proportional to the volume. At the end of the process the rms speed of the gas molecules has doubled from its initial value. The molar heat capacity of the gas in the given process is :-

Molar heat capacity of an ideal gas in the process PV^(x) = constant , is given by : C = (R)/(gamma-1) + (R)/(1-x) . An ideal diatomic gas with C_(V) = (5R)/(2) occupies a volume V_(1) at a pressure P_(1) . The gas undergoes a process in which the pressure is proportional to the volume. At the end of the process the rms speed of the gas molecules has doubled from its initial value. The molar heat capacity of the gas in the given process is :-

Molar heat capacity of an ideal gas in the process PV^(x) = constant , is given by : C = (R)/(gamma-1) + (R)/(1-x) . An ideal diatomic gas with C_(V) = (5R)/(2) occupies a volume V_(1) at a pressure P_(1) . The gas undergoes a process in which the pressure is proportional to the volume. At the end of the process the rms speed of the gas molecules has doubled from its initial value. The molar heat capacity of the gas in the given process is :-

An ideal diatomic gas occupies a volume V_1 at a pressure P_1 The gas undergoes a process in which the pressure is proportional to the volume . At the end of process the root mean square speed of the gas molecules has doubled From its initial value then the heat supplied to the gas in the given process is

An ideal diatomic gas with C_V = (5 R)/2 occupies a volume (V_(i) at a pressure (P_(i) . The gas undergoes a process in which the pressure is proportional to the volume. At the end of the process, it is found that the rms speed of the gas molecules has doubles from its initial value. Determine the amount of energy transferred to the gas by heat.

An ideal diatomic gas with C_V = (5 R)/2 occupies a volume (V_(i) at a pressure (P_(i) . The gas undergoes a process in which the pressure is proportional to the volume. At the end of the process, it is found that the rms speed of the gas molecules has doubles from its initial value. Determine the amount of energy transferred to the gas by heat.

An ideal diatomic gas undergoes a process in which the pressure is proportional to the volume. Calculate the molar specific heat capacity of the gas for the process.

A gas undergoes a process in which is pressure P and volume V are related as VP^n = constant, the bulk modulus of the gas in this process is :