Home
Class 11
MATHS
" Prove that: "(tan A tan B)/(" tand tem...

" Prove that: "(tan A tan B)/(" tand tem "B)=(sin(A+B))/(sin(A-13))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that :(tan A+tan B)/(tan A-tan B)=(sin(A+B))/(sin(A-B))

Prove that : (tan A + tan B)/(tan A - tan B) = (sin (A+B))/(sin(A-B))

(tan A + tan B) / (tan A-tan B) = (sin (A + B)) / (sin (AB))

Prove that: If tan A=x tan B, prove that (sin(A-B))/(sin(A+B))=(x-1)/(x+1)

If A+B=90^(0), prove that sqrt((tan A tan B+tan A cot B)/(sin A sec B)-(sin^(2)B)/(cos^(2)A))=tan A

If A+B=90^(@); prove that sqrt((tan A tan B+tan A cot B)/(sin A sec B)-(sin^(2)B)/(cos^(2)A))=tan A

If A + B = 90^(@) , prove that sqrt((tan A tan B + tan A cot B)/(sin A sec B ) - (sin^(2) B)/(cos^(2)A)) = tan A .

If A+B=90 then prove that sqrt((tan A tan B+tan A cot B)/(sin A sec B))=sec A

if a+b=90^(@) then prove that sqrt((tan A tan B+tan A cot B)/(sin A sec B))=sec A

"Prove that" tan (A+B) - tan (A - B) = (sin2 B)/(cos^(2)B - sin^(2) A).