Home
Class 12
MATHS
sum(r=1) ^n tan^-1 (2^(r-1) / (1+ 2^(2r-...

`sum_(r=1) ^n tan^-1 (2^(r-1) / (1+ 2^(2r-1))) ` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sum_(r=1)^(n) tan^(-1) ((2^(r -1))/(1 + 2^(2r -1))) = tan^(-1) (2^(n)) - (pi)/(4)

Prove that sum_(r=1)^(n) tan^(-1) ((2^(r -1))/(1 + 2^(2r -1))) = tan^(-1) (2^(n)) - (pi)/(4)

Prove that sum_(r=1)^(n) tan^(-1) ((2^(r -1))/(1 + 2^(2r -1))) = tan^(-1) (2^(n)) - (pi)/(4)

Prove that sum_(r=1)^(n) tan^(-1) ((2^(r -1))/(1 + 2^(2r -1))) = tan^(-1) (2^(n)) - (pi)/(4)

lim_(x to oo ) tan { sum_(r=1)^(n) tan^(-1) ((1)/( 1 +r +r^2))} is equal to ________.

sum_(r=1)^9 tan^-1(1/(2r^2)) =

lim_(n->oo) sum_(r=1)^ntan^(- 1)((2r+1)/(r^4+2r^3+r^2+1)) is equal to

The value of the lim_(n rarr oo)tan{sum_(r=1)^(n)tan^(-1)((1)/(2r^(2)))}_( is equal to )

sum_(r=1)^oo tan^-1((6^r)/(2^(2r+1)+3^(2r+1)))