Home
Class 12
MATHS
If f(x)=sinx+cosx and g(x)=x^2-1, then ...

If `f(x)=sinx+cosx `and `g(x)=x^2-1`, then `g(f (x)) `is invertible in the domain .

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sin x + cos x, g(x)=x^(2)-1 , then g(f(x)) is invertible in the domain

If f(x)=sin x + cos x, g(x)=x^(2)-1 , then g(f(x)) is invertible in the domain

If f(x)=sinx+cosx, g(x)=x^(2)-1, then g(f(x)) is invertible in the domain

If f(x) = sin x + cos x, g(x) = x^2 -1 , then g(f(x)) is invertible in the domain

If f(x)=sinx+cosx,g(x)=x^(2)-1 , then g(f(x)) is invertible in the domain :

If f(x)=sinx+cosx, g(x)= x^(2)-1 , then g{f(x)} is invertible in the domain

Let f(x)=sin x+cosx and g(x)=x^(2)-1 , then g{f(x)} is invertible if -

If f(x)=cosx+sinx and g(x)=x^(2)-1 , then g(f(x)) is injective in the interval

If f(x) = sin x + cos x , g(x) = x^2 - 1 then show that g(f(x)) is invertible in the domain [-pi/4 , pi/4] .