Home
Class 14
MATHS
(1)/(2)3(2)-y^(2)=x^(2)...

(1)/(2)3_(2)-y^(2)=x^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

it x_(1)^(2) +2y_(1)^(2)+3z_(1)^(2)=x_(2)^(2)+2y_(2)^(2)+3z_(2)^(2)=x_(3)^(2)+2y_(3)^(2)+3z_(3)^(2)=2 " and " x_(2)x_(3) +2y_(2)y_(3)+3z_(2)z_(3)=x_(3)x_(1)+2y_(3)y_(1)+3z_(3)z_(1)=x_(1)x_(2)+2y_(1)y_(2)+3z_(1)z_(2)=1 Then find the value of |{:(x_(1),,y_(1),,z_(1)),(x_(2),,y_(2),,z_(2)),(x_(3),,y_(3),,z_(3)):}|

Find the product of ((1)/(2)x^(2)-(1)/(3)y^(2))and((1)/(2)x^(2)+(1)/(3)y^(2))

The value of ,2x_(1)y_(1),x_(1)y_(2)+x_(2)y_(1),x_(1)y_(3)+x_(3)y_(1)x_(1)y_(2)+x_(2)y_(1),2x_(2)y_(2),x_(2)y_(3)+x_(3)y_(2)x_(1)y_(3)+x_(3)y_(1),x_(2)y_(3)+x_(3)y_(2),2x_(3)y_(3)]| is

If (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) are vertices of equilateral triangle such that (x_(1)-2)^(2)+(y_(1)-3)^(2)=(x_(2)-2)^(2)+(y_(2)-3)^(2)=(x_(3)-2)^(2)+(y_(3)-3)^(2) then

If (x_(1), y_(1)), (x_(2), y_(2)), (x_(3), y_(3)) are the vertices of an equilateral triangle such that (x_(1)-2)^(2)+(y_(1)-3)^(2)=(x_(2)-2)^(2)+(y_(2)-3)^(2)=(x_(3)-2)^(2)+(y_(3)-3)^(2) then x_(1)+x_(2)+x_(3)+2(y_(1)+y_(2)+y_(3))=

If (x_(1)-x_(2))^(2)+(y_(1)-y_(2))^(2)=144,(x_(2)-x_(3))^(2)+(y_(2)-y_(3))^(2)=25 and (x_(3)-x_(1))^(2)+(y_(3)-y_(1))^(2)=169, then the value of det[[x_(1),y_(1),1x_(2),y_(2),1x_(3),y_(3),1]]^(2) is 30(b)30^(2)(c)60(d)60^(2)

if (x_(1),x_(2))^(2)+(y_(1)-y_(2))^(2)=a^(2), (x_(2)-x_(3))^(2)+(y_(2)-y_(3))^(2)=b^(2) (x_(3)-x_(1))^(2)+(y_(3)-y_(1))^(2)=c^(2). where a,b,c are positive then prove that 4 |{:(x_(1),,y_(1),,1),(x_(2) ,,y_(2),,1),( x_(3),, y_(3),,1):}| = (a+b+c) (b+c-a) (c+a-b)(a+b-c)

if (x_(1)-x_(2))^(2)+(y_(1)-y_(2))^(2)=a^(2), (x_(2)-x_(3))^(2)+(y_(2)-y_(3))^(2)=b^(2) (x_(3)-x_(1))^(2)+(y_(3)-y_(1))^(2)=c^(2). where a,b,c are positive then prove that 4 |{:(x_(1),,y_(1),,1),(x_(2) ,,y_(2),,1),( x_(3),, y_(3),,1):}| = (a+b+c) (b+c-a) (c+a-b)(a+b-c)

if (x_(1),x_(2))^(2)+(y_(1)-y_(2))^(2)=a^(2), (x_(2)-x_(3))^(2)+(y_(2)-y_(3))^(2)=b^(2) (x_(3)-x_(1))^(2)+(y_(3)-y_(1))^(2)=c^(2). where a,b,c are positive then prove that 4 |{:(x_(1),,y_(1),,1),(x_(2) ,,y_(2),,1),( x_(3),, y_(3),,1):}| = (a+b+c) (b+c-a) (c+a-b)(a+b-c)