Home
Class 12
MATHS
The product (1-1/(2^2))(1-1/(3^2))(1-1/...

The product `(1-1/(2^2))(1-1/(3^2))(1-1/(4^2))(1-1/(1 1^2))(1-1/(1 2^2))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The product (1-(1)/(2^(2)))(1-(1)/(3^(2)))(1-(1)/(4^(2)))(1-(1)/(11^(2)))(1-(1)/(12^(2))) is equal to

Find the value of (1-1/(2^(2)))(1-1/(3^(2)))(1-1/(4^(2)))(1-1/(5^(2)))…….(1-1/(9^(2)))(1-1/(10^(2)))

lim_(nto oo) (1-1/(2^(2)))(1-1/(3^(2)))(1-1/(4^(2)))…………….(1-1/(n^(2))) equals:

(1-a)(1+a+a^(2))+(1+a)(1-a+a^(2)) is equal to

1/(3^2-1)+1/(5^2-1)+1/(7^2-1)+ . . . + 1/(201^2-1) is equal to

1/(3^2 -1)+1/(5^2 -1)+1/(7^2 -1)+……+1/((201)^2 -1) is equal to