Home
Class 12
MATHS
The vertices of a triangle are A(x1, x1,...

The vertices of a triangle are `A(x_1, x_1, tan theta_1), B(x_2, x_2, tan theta_2)` and `C(x_3, x_3, tan theta_3)`. If the circumcentre coincides with origin then

Promotional Banner

Similar Questions

Explore conceptually related problems

The vertices of a triangle are A(x_(1),x_(1)tan theta_(1)),B(x_(2),x_(2)tan theta_(2))and C(x_(3),x_(3)tan theta_(3)) if the circumcentre of Delta ABC coincides with the origin and H(bar(x),bar(y)) is the orthocentre,show that (bar(y))/(bar(x))=(sin theta1+sin theta_(2)+sin theta_(3))/(cos theta_(1)+cos theta_(2)+cos theta_(3))

The vertices of a triangle are A(x_(1),x_(1)tan alpha),B(x_(2),x_(2)tan B eta) and C(x_(3),x_(3)tan gamma). If the circumcentre of Delta ABC coincides with the origin and H(a,b) be its orthocentre,then (a)/(b) is equal to

tan theta=(2x(x+1))/(2x+1) then sin theta=

theta = tan^(-1) (2 tan^(2) theta) - tan^(-1) ((1)/(3) tan theta) " then " tan theta=

Solve tan theta + tan 2 theta + tan theta * tan 2 theta * tan 3 theta=1

If 4x = sec theta and 4/x = tan theta , then 8(x^2 -1/x^2) is

If tan theta=((2x)(x+1))/(2x+1), find sin theta and cos theta

if f(x)=det[[sec theta,tan^(2)theta,1theta sec x,tan x,x1,tan x-tan theta,0]] then