Home
Class 12
MATHS
If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1...

If `|(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^2)|=0` and vectors `(1,a,a^2),(1,b,b^2) and (1,c,c^2)` are hon coplanar then the product abc equals (A) 2 (B) -1 (C) 1 (D) 0

Promotional Banner

Similar Questions

Explore conceptually related problems

If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^3)|=0 and vectors (1,a,a^2),(1,b,b^2) and (1,c,c^2) are non coplanar then the product abc equals (A) 2 (B) -1 (C) 1 (D) 0

If |(a,a^(2),1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),1+c^(3))|=0 and vectors (1,a,a^(2)),(1,b,b^(2)) and (1,c,c^(2)) are non coplanar then the product abc=

If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^3)|=0 and the vectors A-=(1, a , a^2), B-=(1, b , b^2), C-=(1, c , c^2) are non-coplanar then the value of abc equal to

If |{:( a , a ^(2), 1+ a ^(3)), ( b , b^(2), 1+ b ^(3)), ( c ,c ^(2), 1 + c ^(3)):}|=0 and vectors (1, a,a ^(2)), (1, b, b ^(2)) and (1, c, c^(2)) are non-coplanar, then the value of abc +1 is

IF |{:(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^3):}|=0 , then show that abc=1

If |{:(a,,a^(2),,1+a^(3)),(b,,b^(2),,1+b^(3)),(c,,c^(2),,1+c^(3)):}|=0 and the vectors vecA =(1, a, a^(2)) , vec(B) = (1, b, b^(2)) , vec(C )(1,c,c^(2)) are non-coplanar then the product abc = ….