Home
Class 12
MATHS
For 2 lt x lt 4 find the values of |x|....

For `2 lt x lt 4` find the values of |x|.
(ii) For `-3 le x le -1`, find the values of |x|.
(iii) For `-3 le x lt 1,` find the values of |x|
(iv) For `-5 lt x lt 7 ` find the values of |x-2|
(v) For `1 le x le 5` find fthe values of |2x -7|

Text Solution

Verified by Experts

(i) `2 lt x lt 4`
Here values on real number line whose distance from zero lies between 2 and 4
Here values of x are positve `rArr |X| in (2,4)`
(ii) `-3 le x le -1`
Here value on real number line whose distance from zero lies between 1 and 3 or equal to 1 or 3 .
`rArr 1 le |X| le 3 `
(iii) `-3 le x lt 1`
For `-3 le x lt 0, |x| in (0,3]`
For `0 le x lt 0, |x| in {0,1)`
`So for -3 le x lt ,|X| in [0,1 ) cap (0,3 ] or |x| in [ 0,3]`
(iv) ` -5 lt x lt 7 `
` or -7 lt x -2 lt 5 `
`rArr 0 le |x-2|lt 7`
(v) `1 le x le 5`
of `2 le 2x le 10 `
`rArr -5 le 2x -7 le 3`
`rArr | 2x -7 | in [ 0, 5]`
Promotional Banner

Topper's Solved these Questions

  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE|Exercise Exercise 1.1|12 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE|Exercise Exercise 1.2|8 Videos
  • SEQUENCE AND SERIES

    CENGAGE|Exercise Question Bank|36 Videos
  • SETS AND RELATIONS

    CENGAGE|Exercise Question Bank|15 Videos

Similar Questions

Explore conceptually related problems

The maximum value of |x log x| for 0 lt x le 1 is

Find the value of x^(2) for the given values of x. (i) x lt 3 (ii) x gt -1 (iii) x ge 2 (iv) x lt -1

Find tha values of x^2 for the given values of x. (i) x lt 2 (ii) x gt -1 (iii) x ge 2 (iv) x lt -1

Find the value of 1/x for the given values of x (i) x gt 3 (ii) x lt -2 (iii) x in (-1 , 3 ) - {0}

Function f(x) is continuous on its domain [-2,2],where f(x) = (sinax)/x +2, for -2 le x lt0 =3x+5 , for 0 le x le 1 = sqrt(x^2+8)-b, for 1 lt x le 2 Find the value of a+b+2

If f(x)={:{(3", if " 0 le x le 1),(4", if " 1 lt x lt 3),(5", if " 3 le x le 10):} , then

Maximum and minimum value of f(x) = max (sin t), 0 lt t lt x le 0 x le 2pi are

Write the following as intervals : (i) {x : x in R, -4 lt x le 6} (ii) {x : x in R, -12 lt x lt -10} (iii) {x : x in R, 0 le x lt 7} (iv) {x : x in R, 3 le x le 4} .