Solve the following (i) | x-2 | = (x-2) (ii) |x+3 |=-x-3 (iii) `|x^2-x|=x^2-x ` (iv) `|x^2-x-2|=2 +x-x^2`
Text Solution
Verified by Experts
(i) `|x-2|= (x-2), if x-2 le 0 of or x ge 2 ` (ii) `| x+3 | =-x-3, if x+3 le 0 or x le -3` (iii) `|x^2-x|=x^2-x, if x^2- x ge 0 ` or `x(x-1) ge 0 ` `rArr x in (-oo ,0] cup [1, oo)` (iv) `|x^2 - x -2 |=2 + x - x^2` or `x^2-x -2 le 0 ` or `(x-2)(x+1) le 0 ` `or -1 le x le 2 `
Topper's Solved these Questions
SET THEORY AND REAL NUMBER SYSTEM
CENGAGE|Exercise Exercise 1.1|12 Videos
SET THEORY AND REAL NUMBER SYSTEM
CENGAGE|Exercise Exercise 1.2|8 Videos
SEQUENCE AND SERIES
CENGAGE|Exercise Question Bank|36 Videos
SETS AND RELATIONS
CENGAGE|Exercise Question Bank|15 Videos
Similar Questions
Explore conceptually related problems
Solve the following : (i) |x-2|=(x-2) " (ii) " |x+3| = -x-3 (iii) |x^(2)-x|=x^(2)-x " (iv) " |x^(2)-x-2| =2+x-x^(2)
solving the following equations : (i) |x-3| = x-1 (ii) |x^(2)-3x|=2x-6 (iii) |x-4|+|x-7| = 11
Solve the following equations : (i) |x^(2)-2| = 2 |x-3| (ii) |x^(2)-4|+|x^(2)-9|=0 (iii) |x-1|+|x+5| = 6
Solve the following linear equations (i) |x| + 2 = 3 (ii) |x| - 2x + 5 = 0 (iii) x|x| = 4
Solve the following: |x-2|=(x-2) |x+2|=-x-3 |x^2-x|=x^2-x |x^2-x-2|=2+x-x^2
If graph of y=(x-1)(x-2) is then draw the graph of the following (i) y=|(x-1)(x-2)| (ii) |y|=(x-1)(x-2) (iii) y=(|x|-1)(|x|-2) (iv) |(|x|-1)(|x|-2)| (v) |y|=|(|x|-1)(|x|-2)|
Factorise the following : (i) x^(2)+7x+12 " " (ii) x^(2)+18x+45 " " (iii) x^(2)-7x+12 " "(iv) x^(2)-25x-84
(i) x^(4) (ii) x^(-3) (iii) 3x^(2)
Solve for x (i) |x+1|=4x+3 (ii) |x+1|=|x+3| (iii) 7|x-2|-|x-7|=5 (iv) ||x-1|-2|=6x+8 (v) |2x^(2)-3x+1|=|x^(2)+x-3|
Find the range of the following (i) f(x) = x^(2) (ii) f(x) = x (iii) f(x) = x^(2) + 2 (iv) f(x) = x^(3)
CENGAGE-SET THEORY AND REAL NUMBER SYSTEM -Archieves