Prove that
`sqrt(x^2+2x+1)-sqrt(x^2-2x+1)={-2, x<-1 2x,-1lt=xlt=1 2,x >1`
Text Solution
Verified by Experts
`sqrt(x^2+2x+1)-sqrt(x^2-2x+1)` `= sqrt((x+1)^2)-sqrt((x-1)^2)` `=|x+1|-|x-1|` `={{:(-x-1-(1-x)","x lt -1),(x+1 -(1-x)","-1 lex le 1),(x+1-(x-1)"," x gt1):}={{:(-2","x lt-1),(2x ","-1 le x le1),(2 "," x gt 1):}`
Topper's Solved these Questions
SET THEORY AND REAL NUMBER SYSTEM
CENGAGE|Exercise Exercise 1.1|12 Videos
SET THEORY AND REAL NUMBER SYSTEM
CENGAGE|Exercise Exercise 1.2|8 Videos
SEQUENCE AND SERIES
CENGAGE|Exercise Question Bank|36 Videos
SETS AND RELATIONS
CENGAGE|Exercise Question Bank|15 Videos
Similar Questions
Explore conceptually related problems
Prove that sqrt(x^2+2x+1)-sqrt(x^2-2x+1)={-2, x 1
If x=(1)/(2)(sqrt(a)+(1)/(sqrt(a))) , then show that (sqrt(x^(2)-1))/(x-sqrt(x^(2)-1))=(a-1)/(2) .
If sin^(-1) x + sin^(-1) y = pi/2 , prove that x sqrt(1-x^2) + y sqrt(1-y^2) =1 .
(1)/(sqrt(2x))+sqrt(2x)
If x =1/2 (sqrt(a/b)-sqrt(b/a)) then prove that (2asqrt(1+x^2))/(x+sqrt(1+x^2))= a +b
Prove that e^(x)+sqrt(1+e^(2x))>=(1+x)+sqrt(2+2x+x^(2))AA x in R