Home
Class 12
MATHS
Prove that sqrt(x^2+2x+1)-sqrt(x^2-2x+1)...

Prove that `sqrt(x^2+2x+1)-sqrt(x^2-2x+1)={-2, x<-1 2x,-1lt=xlt=1 2,x >1`

Text Solution

Verified by Experts

`sqrt(x^2+2x+1)-sqrt(x^2-2x+1)`
`= sqrt((x+1)^2)-sqrt((x-1)^2)`
`=|x+1|-|x-1|`
`={{:(-x-1-(1-x)","x lt -1),(x+1 -(1-x)","-1 lex le 1),(x+1-(x-1)"," x gt1):}={{:(-2","x lt-1),(2x ","-1 le x le1),(2 "," x gt 1):}`
Promotional Banner

Topper's Solved these Questions

  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE|Exercise Exercise 1.1|12 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE|Exercise Exercise 1.2|8 Videos
  • SEQUENCE AND SERIES

    CENGAGE|Exercise Question Bank|36 Videos
  • SETS AND RELATIONS

    CENGAGE|Exercise Question Bank|15 Videos

Similar Questions

Explore conceptually related problems

Prove that sqrt(x^2+2x+1)-sqrt(x^2-2x+1)={-2, x 1

If x=(1)/(2)(sqrt(a)+(1)/(sqrt(a))) , then show that (sqrt(x^(2)-1))/(x-sqrt(x^(2)-1))=(a-1)/(2) .

If sin^(-1) x + sin^(-1) y = pi/2 , prove that x sqrt(1-x^2) + y sqrt(1-y^2) =1 .

(1)/(sqrt(2x))+sqrt(2x)

If x =1/2 (sqrt(a/b)-sqrt(b/a)) then prove that (2asqrt(1+x^2))/(x+sqrt(1+x^2))= a +b

Prove that e^(x)+sqrt(1+e^(2x))>=(1+x)+sqrt(2+2x+x^(2))AA x in R

Prove that: lim_(x rarr oo)x(sqrt(x^(2)+1)-sqrt(x^2-1))) = 1

Prove that : sin^(-1) (2x sqrt(1-x^(2)) ) = 2 sin^(-1) x , -1/(sqrt(2))le x le 1/(sqrt(2)

a+1=2sqrt(a)x then (sqrt(x^(2)-1))/(x-sqrt(x^(2)-1))=

Prove that : tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=(pi)/(4)+(1)/(2) cos^(-1)x^(2)