`(x^2+1)/(x^2-2)` or `yx^2-2y= x^2+1` or `x^2=(2y+1)/(y-1)` Now `x^2 ge 0 rArr (2y+1)/(y-1) ge 0` Now `x^2 ge 0 rArr (2y +1)(y-1) le 0` `rArr y le -1//2 or y gt 1`
Topper's Solved these Questions
SET THEORY AND REAL NUMBER SYSTEM
CENGAGE|Exercise Exercise 1.1|12 Videos
SET THEORY AND REAL NUMBER SYSTEM
CENGAGE|Exercise Exercise 1.2|8 Videos
SEQUENCE AND SERIES
CENGAGE|Exercise Question Bank|36 Videos
SETS AND RELATIONS
CENGAGE|Exercise Question Bank|15 Videos
Similar Questions
Explore conceptually related problems
Find all the possible values of f(x) =(1-x^2)/(x^2+3)
If x^(3)=9x , then find all possible values of x :-
Find all possible values of expressions (2+x^2)/(4-x^2)
Find all possible solutions of x^2=e^(y')
For x in R, find all possible values of |x-3|-2 (ii) 4-|2x+3|
Find all possible values of expression sqrt(1-sqrt(x^(2)-6x+9)).
((3)/(x))^((1)/(5))+((x)/(3))^((1)/(7))=22(2)/(3) ,find difference of all possible value of x.
If x is rational and 4(x^(2)+(1)/(x^(2)))+16(x+(1)/(x))-57=0 , then the product of all possible values of x is
If (2)^(log_(2)x^(2))-(3)^(log_(3)(x))-6=0 ,then sum of all possible values of x is
CENGAGE-SET THEORY AND REAL NUMBER SYSTEM -Archieves