Home
Class 12
MATHS
Solve (x(3-4x)(x+1))/(2x-5)lt 0...

Solve `(x(3-4x)(x+1))/(2x-5)lt 0 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \(\frac{x(3-4x)(x+1)}{2x-5} < 0\), we will follow these steps: ### Step 1: Identify the critical points The critical points are found by setting the numerator and denominator to zero. 1. **Numerator**: \(x(3-4x)(x+1) = 0\) - \(x = 0\) - \(3 - 4x = 0 \Rightarrow x = \frac{3}{4}\) - \(x + 1 = 0 \Rightarrow x = -1\) 2. **Denominator**: \(2x - 5 = 0\) - \(2x = 5 \Rightarrow x = \frac{5}{2}\) Thus, the critical points are \(x = -1\), \(x = 0\), \(x = \frac{3}{4}\), and \(x = \frac{5}{2}\). ### Step 2: Determine the intervals The critical points divide the number line into the following intervals: - \((- \infty, -1)\) - \((-1, 0)\) - \((0, \frac{3}{4})\) - \((\frac{3}{4}, \frac{5}{2})\) - \((\frac{5}{2}, \infty)\) ### Step 3: Test the sign of the expression in each interval We will choose a test point from each interval to determine the sign of the expression \(\frac{x(3-4x)(x+1)}{2x-5}\): 1. **Interval \((- \infty, -1)\)**: Choose \(x = -2\) \[ \frac{-2(3 - 4(-2))(-2 + 1)}{2(-2) - 5} = \frac{-2(3 + 8)(-1)}{-4 - 5} = \frac{-2 \cdot 11 \cdot (-1)}{-9} > 0 \] 2. **Interval \((-1, 0)\)**: Choose \(x = -0.5\) \[ \frac{-0.5(3 - 4(-0.5))(-0.5 + 1)}{2(-0.5) - 5} = \frac{-0.5(3 + 2)(0.5)}{-1 - 5} = \frac{-0.5 \cdot 5 \cdot 0.5}{-6} < 0 \] 3. **Interval \((0, \frac{3}{4})\)**: Choose \(x = 0.5\) \[ \frac{0.5(3 - 4(0.5))(0.5 + 1)}{2(0.5) - 5} = \frac{0.5(3 - 2)(1.5)}{1 - 5} = \frac{0.5 \cdot 1 \cdot 1.5}{-4} < 0 \] 4. **Interval \((\frac{3}{4}, \frac{5}{2})\)**: Choose \(x = 1\) \[ \frac{1(3 - 4(1))(1 + 1)}{2(1) - 5} = \frac{1(3 - 4)(2)}{2 - 5} = \frac{1(-1)(2)}{-3} > 0 \] 5. **Interval \((\frac{5}{2}, \infty)\)**: Choose \(x = 3\) \[ \frac{3(3 - 4(3))(3 + 1)}{2(3) - 5} = \frac{3(3 - 12)(4)}{6 - 5} = \frac{3(-9)(4)}{1} < 0 \] ### Step 4: Compile the results From the tests, we find the sign of the expression in each interval: - \((- \infty, -1)\): Positive - \((-1, 0)\): Negative - \((0, \frac{3}{4})\): Negative - \((\frac{3}{4}, \frac{5}{2})\): Positive - \((\frac{5}{2}, \infty)\): Negative ### Step 5: Write the solution We want the intervals where the expression is negative: - \((-1, 0)\) - \((0, \frac{3}{4})\) - \((\frac{5}{2}, \infty)\) Thus, the solution to the inequality \(\frac{x(3-4x)(x+1)}{2x-5} < 0\) is: \[ x \in (-1, 0) \cup (0, \frac{3}{4}) \cup (\frac{5}{2}, \infty) \]

To solve the inequality \(\frac{x(3-4x)(x+1)}{2x-5} < 0\), we will follow these steps: ### Step 1: Identify the critical points The critical points are found by setting the numerator and denominator to zero. 1. **Numerator**: \(x(3-4x)(x+1) = 0\) - \(x = 0\) - \(3 - 4x = 0 \Rightarrow x = \frac{3}{4}\) ...
Promotional Banner

Topper's Solved these Questions

  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE|Exercise Exercise 1.4|11 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE|Exercise Exercise 1.5|12 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE|Exercise Exercise 1.2|8 Videos
  • SEQUENCE AND SERIES

    CENGAGE|Exercise Question Bank|36 Videos
  • SETS AND RELATIONS

    CENGAGE|Exercise Question Bank|15 Videos

Similar Questions

Explore conceptually related problems

Solve : (x+4)/(x-2)-(2)/(x+1) lt 0

Solve (x^(3)-4x)sqrt(x^(2)-1)=0

Solve : (|x-1|-3)(|x+2)-5) lt 0 .

Solve log_(2).(x-4)/(2x+5) lt 1 .

Solve (i)" "(x-1)/(x)-(x+1)/(x-1)lt2" "(ii)" "(x^(2)+4x+4)/(2x^(2)-x-1)gt0.

Solve (x^2-4)sqrt(x^2 -1) lt 0.

Solve log_(x+3)(x^(2)-x) lt 1 .

Solve : (5x)/(4)gt (4x-1)/(3) and 4x + 3 lt (2x + 1)/(3)

Solve the following inequalities: ((x-1)(x-2))/((2x-5)(x+4))lt0

Solve x(x+2)^(2)(x-1)^(5)(2x-3)(x-3)^(4)>=0