Home
Class 11
MATHS
" 7."log(x)(1)/(3)=-(1)/(3)" zor,"x=...

" 7."log_(x)(1)/(3)=-(1)/(3)" zor,"x=

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(x)(1/3)=-1/3 then x=

Solve log_((1)/(3))(x-1)>log_((1)/(3))4 .

The value of x,log_((1)/(2))x>=log_((1)/(3))x is

Find the value of x satisfying the equation,sqrt((log_(3)(3x)^((1)/(3))+log_(x)(3x)^((1)/(3)))log_(3)(x^(3)))+sqrt((log_(3)((x)/(3))^((1)/(3))+log_(x)((3)/(x))^((1)/(3)))log_(3)(x^(3)))=2

log_((3)/(4))log_(8)(x^(2)+7)+log_((1)/(2))log_((1)/(4))(x^(2)+7)^(-1)=-2

log_((3)/(4))log_(8)(x^(2)+7)+log_((1)/(2))log_((1)/(4))(x^(2)+7)^(-1)=-2

Consider the inequalities log_(5)(x-3)+(1)/(2)log_(5)3<(1)/(2)log_(5)(2x^(2)-6x+7) and log_(3)x+log_(sqrt(3))x+log_((1)/(3))x<6

Assertion (A) : (1)/(5)+(1)/(3.5^(3))+(1)/(5.5^(5))+(1)/(7.5^(7))+…(1)/(2)log((3)/(2)) Reason (R ) : If |x| lt 1 then log_(e )((1+x)/(1-x))=2(x+(x^(3))/(3)+(x^(5))/(5)+…)

Find the value of x satisfying the equation, sqrt((log_3(3x)^(1/3)+log_x(3x)^(1/3))log_3(x^3))+sqrt((log_3(x/3)^(1/3)+log_x(3/x)^(1/3))log_3(x^3))=2

Find the value of x satisfying the equation, sqrt((log_3(3x)^(1/3)+log_x(3x)^(1/3))log_3(x^3))+sqrt((log_3(x/3)^(1/3)+log_x(3/x)^(1/3))log_3(x^3))=2