Home
Class 12
MATHS
If x\ sqrt(1+y)+y\ sqrt(1+x\ )\ 0,\ -1<x...

If `x\ sqrt(1+y)+y\ sqrt(1+x\ )\ 0,\ -1

Promotional Banner

Similar Questions

Explore conceptually related problems

If x sqrt ( 1+ y) + y sqrt( 1+x) =0 , prove that (dy)/( dx) = - (1)/( (1+x)^2) .

If x sqrt(1+y)+y sqrt(1+x)=0, prove that (dy)/(dx)=-(1)/((x+1)^(2))

If x sqrt(1+y)+y sqrt(1+x)=0, then prove that (dy)/(dx)=-(1+x)^(-2)

If x sqrt(1-y^(2))+y sqrt(1-x^(2))=k , then the value of (dy)/(dx) at x=0 is -

If x sqrt(1+y)+y sqrt(1+x)=0, find (dy)/(dx)* To prove (dy)/(dx)=-(1)/((1+x)^(2))

If quad sqrt(1+y)+y sqrt(1+x)0,-1

If x sqrt(1+y)+y sqrt(1+x)=0 and x!=y ,then (1+x)^(2)(dy)/(dx)+(3)/(2)=

x sqrt(1 + y) + y sqrt(1 + x) =0implies (dy)/(dx)=