Home
Class 12
MATHS
If x = log (1 + t^(2)) " and " y = t - t...

If `x = log (1 + t^(2)) " and " y = t - tan^(-1)t, " then" dy/dx ` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = t + (1)/(t) "and " y = t - (1)/(t) . "then" (dy)/(dx) is equal to

If x = t + (1)/(t) "and " y = t - (1)/(t) . "then" (dy)/(dx) is equal to

If y = t^(2) + t - 1 " then " (dy)/(dx) is equal to

If sin x = (2t)/(1+t^(2)), tan y = (2t)/(1-t^(2)) , then (dy)/(dx) is equal to

Solve the following: If x = log (1+ t^2), y= t- tan^(-1) t , then show that dy/dx = (frac{sqrt (e^x -1)}{2})

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to