Home
Class 11
MATHS
Prove the following identity: 4(cos^3 10...

Prove the following identity: `4(cos^3 10^0+sin^3\ \ 20^0)=\ 3\ (cos 10^0+sin 20^0)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identity: 4(cos^(3)10^(0)+sin^(3)20^(@))=3(cos10^(0)+sin20^(@))

Show that 4(cos^3 10^@+sin^3 20^@)=3(cos10^@+sin20^@)

Prove the following identities : (cos 0 cot 0)/ (1 + sin 0) = cosec 0 -1

Prove the following Identities cos 10^(@) + cos 110^(@) + cos 130^(@) = 0

Prove the following 4(cos^(3)10^(@)+sin^(3)20^(@))=3(cos10^(@)+sin20^(@))

Prove that 4(cos ^(3) 10^(@) + sin ^(3) 20^(@)) = 3 ( cos 10^(@) + sin 20^(@)).

Prove that, 4 (cos^(3) 10^(@) + sin^(3) 20 ^(@))=3 (cos 10^(@) + sin 20^(@))

Prove the following identities : (sin 0 - 2 sin^(3) 0)/ (2 cos^(3) 0 - cos 0) = tan 0

4( cos^(3) 10^(@) + sin^(3) 20^(@))=

Prove that : (cos 20^0 - sin 20^0)/(cos 20^0 + sin 20^0) = tan 25^0