Home
Class 12
MATHS
Let for a != a1 != 0 , f(x)=ax^2+bx+c ,g...

Let for `a != a_1 != 0` , `f(x)=ax^2+bx+c` ,`g(x)=a_1x^2+b_1x+c_1` and `p(x) = f(x) - g(x)`. If `p(x) = 0` only for `x = -1` and `p(-2) = 2` then the value of `p(2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let for a!=a_(1)!=0,f(x)=ax^(2)+bx+cg(x)=a_(1)x^(2)+b_(1)x+c_(1) and p(x)=f(x)-g(x). If p(x)=0 only for x=-1 and p(-2)=2 then the value of p(2)

Let for a?a!?0, f(x)-ax2 + bx + c, g(x) = aix? + bix + c, and p(x)-f(x)-g(x). If p(x) = 0 only for x =-1 and p(-2) = 2, then the value of p(2) is: (1) 18 (2) 3 AIEEE-2011] (3) 9 (4) 6

If f(x)=ax^(2)+bx+c and f(x+1)=f(x)+x+1 , then the value of (a+b) is __

Divide p(x) by g(x) , where p(x) = p(x)=x+3x^2-1 and g(x)=1+x

If f(x)=ax^(2)+bx+c and f(x + 1) = f(x) + x + 1, then determine the values of a and b.

p(x)= ax^2+bx+5 :- If (x^2-1) is a factor of p(x),then find the value of a and b?

If f(x)=x^2+x-42 and f(p-1)=0. what is a positive value of p ?

Let a,b,c be the roots of the equation x^(4)+x^(3)+x^(2)+x-1=0. Let f(x)=x^(6)-6x^(2)+6x+7 and g(x)=px^(2)+qx+r , (p,q,r in R,p!=0). If f(a)=g(a); f(b)=g(b) and f(c)=g(c); then the value of (2)/(g(1)) is