Home
Class 12
MATHS
If the line segment joining the points A...

If the line segment joining the points `A(a,b) and B (c, d)` subtends a right angle at the origin, show that `ac+bd=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the segment joining the points (a,b),(c,d) subtends a right angle at the origin,then

If the line segment joining the points A(a,b) and B(a, -b) subtends an angle theta at the origin, show that cos theta = (a^2 - b^2)/(a^2 +b^2) .

Find the condition If the segment joining the points (a,b) and (c,d) subtends a right angle at the origin

If the line segment joining the point A(a,b) and B(c,d) subtends an angle theta at the origin.Prove that cos theta=(ac+bd)/(sqrt((a^(2)+b^(2))*(c^(2)+d^(2))))

If the line segment joining the points A(a,b) and B(c,d) subtends an angle theta at the origin, then costheta is equal to

If the line segment joining the points A(a,b) and B(c,d) subtends an angle theta at the origin, then costheta is equal to

If the segments joining the points A(a,b) and B(c,d) subtends an angle theta at the origin,prove that :theta=(ac+bd)/((a^(2)+b^(2))(c^(2)+d^(2)))

If the line segment joining the points P (a,b) and Q(c,d) subtends an angle theta at the origin , then the value of costheta is a) (ab+cd)/(sqrt(a^(2)+b^(2))sqrt(c^(2)+d^(2))) b) (ab)/(sqrt(a^(2)+b^(2)))+(bd)/(sqrt(c^(2)+d^(2))) c) (ac+bd)/(sqrt(a^(2)+b^(2))sqrt(c^(2)+d^(2))) d) (ac-bd)/(sqrt(a^(2)+b^(2))sqrt(c^(2)+d^(2)))

If the segments joining the points A(a , b)a n d\ B(c , d) subtends an angle theta at the origin, prove that : theta=(a c+b d)/((a^2+b^2)(c^2+d^2))

If the segments joining the points A(a , b)a n d\ B(c , d) subtends an angle theta at the origin, prove that : cos theta=(a c+b d)/sqrt((a^2+b^2)(c^2+d^2))