Home
Class 11
PHYSICS
Two satellite S1 and S2 revolve roudna p...

Two satellite `S_1 and S_2` revolve roudna planet in coplanar circular orbits in the same sense. Their periods of revoltions are 1 h nd 8 h respectively. tE radius of the orbit of `S_1` is `10^4 km`. When `S_2` is closet to `S_1`., find as. The speed of `S_2` relative to `S_1` and b. the angular speed of `S_2` as observed by an astronaut in `S_1`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Two satellite S_1 and S_2 revolve round a planet in coplanar circular orbits in the same sense. Their periods of revolutions are 1 h nd 8 h respectively. The radius of the orbit of S_1 is 10^4 km . When S_2 is closet to S_1 ., find (a). The speed of S_2 relative to S_1 and (b). the angular speed of S_2 as observed by an astronaut in S_1 .

Two satellite S_1 and S_2 revolve round a planet in coplanar circular orbits in the same sense. Their periods of revolutions are 1 h nd 8 h respectively. The radius of the orbit of S_1 is 10^4 km . When S_2 is closet to S_1 ., find (a). The speed of S_2 relative to S_1 and (b). the angular speed of S_2 as observed by an astronaut in S_1 .

Two satellites S_1 and S_2 revole round a planet in coplanar circular orbits in the same sanse. Their periods of revolution are 1 hour and 8 hour respectively. The radius of the orbit of S_1 is 10^4 km, When S_2 is closest to S_1 find (i) the speed of S_2 relative to S_1 (ii) the angular speed of S_2 as actually observed by an astronaut is S_1.

Two satellites S_(1) and S_(2) revolve round a planet in coplaner circular orbit in the same sense. Their period of revolution are 1 hour and 8 hour respectively. The radius of the orbit of S_(1) is 10^(4) km . When S_(2) is closest to S_(1) , find (a) The speed of S_(2) relative to S_(1) , (b) The angular speed of S_(2) actually observed by an astronaut is S_(1)

Two satellites S_(1) and S_(2) resolve round a planet in coplaner circular orbit in the same sense. Their period of revolution are 1 hour and 8 hour respectively. The radius of the orbit of S_(1) is 10^(4) km . When S_(2) is closest to S_(1) , find (a) The speed of S_(2) relative to S_(1) , (b) The angular speed of S_(2) actually observed by an astronaut is S_(1)

Two satellites S1 and S2 revolve round a planet in coplanar circular orbits in the same sense. TI1eir periods of revolution are 2 hours and 16 hours respectively. If the radius of the orbit of S_1 is 10^4 , then the radius of the orbit of S_2 is

Two satellites S1 and S2 revolve round a planet in coplanar circular orbits in the same sense. TI1eir periods of revolution are 2 hours and 16 hours respectively. If the radius of the orbit of S_1 is 10^4 , then the radius of the orbit of S_2 is

Two satellite S_(1) and S_(2) revolve round a planet in coplanar circular orbits in the same sense. Their periods of revolution are 1hr and 8hours respectively. The radius of the orbit of S_(1) is 10^(4)km . When S_(2) is closet to S_(1) (i) the speed S_(2) relative to S_(1) as actually observed by an astronaut in S_(1) .

Two saetllites S_(1) and S_(2) revolve around a planet in coplaner circular orbit in the same sense. Their periods of revolutions are 1 hour and 8 hours respectively. The radius of orbit of S_(1) is 10^(4) km . When S_(2) is closed to S_(1) , the speed of S_(2) relative to S_(1) is pi xx 10^(n) km//h . what is the value of n ?

Two satellites S_(1) and S_(2) revolve around a planet in coplanar circular orbits in the same sense their periods of revolution are 1 hour and 8hours respectively the radius of the orbit of S_(1) is 10^(4) km when S_(1) is closest to S_(2) the angular speed of S_(2) as observed by an astronaut in S_(1) is :