Home
Class 12
MATHS
For any two vectors vec ua n d vec v pr...

For any two vectors ` vec ua n d vec v` prove that `( vec udot vec v)^2+| vec uxx vec v|^2=| vec u|^2| vec v|^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any two vectors vec ua n d vec v prove that ( vec u . vec v)^2+| vec uxx vec v|^2=| vec u|^2| vec v|^2

For any two vectors vec ua n d vec v prove that ( vec u. vec v)^2+| vec uxx vec v|^2=| vec u|^2| vec v|^2

For any two vectors vec ua n d vec v prove that ( vec u. vec v)^2+| vec uxx vec v|^2=| vec u|^2| vec v|^2

For any two vectors vec u and vec v prove that (vec udot v)^(2)+|vec u xxvec v|^(2)=|vec u|^(2)|vec v|^(2)

For any two vectors vec a and vec b ,prove that (vec a xxvec b)^(2)=|vec a|^(2)|vec b|^(2)-(vec a*vec b)^(2)

vec aa n d vec b are two non-collinear unit vector, and vec u= vec a-( vec adot vec b) vec ba n d vec v= vec axx vec bdot Then | vec v| is | vec u| b. | vec u|+| vec udot vec b| c. | vec u|+| vec udot vec a| d. none of these

Let vec aa n d vec b be two non-collinear unit vector. If vec u= vec a-( vec adot vec b) vec ba n d vec v= vec axx vec b ,t h e n| vec v| is | vec u| b. | vec u|+| vec udot vec a| c. | vec u|+| vec udot vec b| d. | vec u|+ hat udot| vec a+ vec b|

If vec u , vec v and vec w are three non-coplanar vectors, then prove that ( vec u+ vec v- vec w) . [ [( vec u- vec v)xx( vec v- vec w)]]= vec u . vec v xx vec w

If vec u , vec va n d vec w are three non-cop0lanar vectors, then prove that ( vec u+ vec v- vec w)dot( vec u- vec v)xx( vec v- vec w)= vec udot vec vdotxx vec w

Let vec aa n d vec b be two non-collinear unit vector. If vec u= vec a-( vec adot vec b) vec ba n d vec v= vec axx vec b ,t h e n| vec v| is a. | vec u| b. | vec u|+| vec udot vec a| c. | vec u|+| vec udot vec b| d. | vec u|+ hat udot| vec a+ vec b|