Home
Class 12
MATHS
If Delta represents the area of acute an...

If `Delta` represents the area of acute angled triangle ABC `sqrt(a^(2)b^(2) -4Delta^(2)) + sqrt(b^(2) c^(2) -4Delta^(2)) + sqrt(c^(2) a^(2) -4Delta^(2))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If Delta represents the area of acute angled triangle ABC, then sqrt(a^(2)b^(2)-4Delta^(2))+ sqrt(b^(2)c^(2)-4Delta^(2))+sqrt(c^(2)a^(2)-4Delta^(2))=

If Delta represents the area of acute angled triangle ABC,then sqrt(a^(2)b^(2)-4Delta^(2))+sqrt(b^(2)c^(2)-4Delta^(2))+sqrt(c^(2)a^(2)-4Delta^(2))= (a) a^(2)+b^(2)+c^(2)(b)(a^(2)+b^(2)+c^(2))/(2) (c) ab cos C+bosA+ca cos B(d)ab sin C+bc sin A+ca sin B

If Delta represents the area of acute angled triangle ABC, then sqrt(a^2b^2-4Delta^2)+sqrt(b^2c^2-4Delta^2)+sqrt(c^2a^2-4Delta^2)= (a) a^2+b^2+c^2 (b) (a^2+b^2+c^2)/2 (c) a bcosC+b ccosA+c acosB (d) a bsinC+b csinA+c asinB

If Delta represents the area of acute angled triangle ABC, then sqrt(a^2b^2-4Delta^2)+sqrt(b^2c^2-4Delta^2)+sqrt(c^2a^2-4Delta^2)= (a) a^2+b^2+c^2 (b) (a^2+b^2+c^2)/2 (c) a bcosC+bc cosA+c acosB (d) a bsinC+b csinA+c asinB

If Delta represents the area of acute angled triangle ABC, then sqrt(a^2b^2-4Delta^2)+sqrt(b^2c^2-4Delta^2)+sqrt(c^2a^2-4Delta^2)= (a) a^2+b^2+c^2 (b) (a^2+b^2+c^2)/2 (c) a bcosC+bc cosA+c acosB (d) a bsinC+b csinA+c asinB

If Delta represents the area of acute angled triangle ABC, then sqrt(a^2b^2-4Delta^2)+sqrt(b^2c^2-4Delta^2)+sqrt(c^2a^2-4Delta^2)= (a) a^2+b^2+c^2 (b) (a^2+b^2+c^2)/2 (c) a bcosC+bc cosA+c acosB (d) a bsinC+b csinA+c asinB

In an acute triangle ABC if 2a^(2)b^(2)+2b^(2)c^(2)=a^(4)+b^(4)+c^(4), then angle

In a triangle ABC if 2a= sqrt(3)b+c then

In an acute angled Delta ABC , if a^(4) + b^(4) +c^(4) = 2c^(2) (a^(2) + b^(2)) then the angle C is

If the area of the triangle ABC be triangle , show that, b^(2)sin 2C + c^(2) sin 2B= 4triangle .