Home
Class 12
MATHS
.^22C5 + sum(i=1)^4 .^(26-i)C4=...

`.^22C_5 + sum_(i=1)^4 .^(26-i)C_4=`

Promotional Banner

Similar Questions

Explore conceptually related problems

"^45C_8 + sum_(k=1)^7 "^(52-k)C_7 + sum_(i=1)^5 "^(57-i)C_(50-i) =

The value of the expression ""^(47)C_(4) + sum_(i=1)^(5) ""^(52-i)C_(3) is

The value of expression .^47 C_4+sum_(j=1)^5.^(52-j)C_3 is equal to a. .^47 C_5 b. .^52 C_5 c. .^52 C_4 d. none of these

The value of expression .^47 C_4+sum_(j=1)^5.^(52-j)C_3 is equal to a. .^47 C_5 b. .^52 C_5 c. .^52 C_4 d. none of these

The value of expression .^47 C_4+sum_(j=1)^5.^(52-j)C_3 is equal to a. .^47 C_5 b. .^52 C_5 c. .^52 C_4 d. none of these

The value of expression .^47 C_4+sum_(j=1)^5.^(52-j)C_3 is equal to a. .^47 C_5 b. .^52 C_5 c. .^52 C_4 d. none of these

Prove that .^(35)C_(5) + sum_(r=0)^(4^((39-r))) C_(4) = .^(40)C_(5)