Home
Class 11
MATHS
Prove that (r+1)^n Cr-r^n Cr+(r-1)^n C2-...

Prove that `(r+1)^n C_r-r^n C_r+(r-1)^n C_2-^n C_3++(-1)^r^n C_r=(-1)^r^(n-2)C_rdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that .(r+1)*^n C_r-r*^n C_r+ ... +(-1)^r.^n C_r=(-1)^r.^(n-2)C_rdot

Prove that .^(n+1)C_(r+1)+^nC_r+^nC_(r-1)=^(n+2)C_(r+1)

Prove that .^(n)C_(r)+^(n)C_(r-1)=^(n+1)C_(r)

Prove that "^nC_r+2 ^(n)C_(r-1)+ ^(n)C_(r-2) = ^(n+2)C_r .

Prove that ""^(n)C_r + ""^(n)C_(r-1) = ""^(n+1)C_r

Prove that "^n C_r+^(n-1)C_r+...+^r C_r=^(n+1)C_(r+1) .

Prove that "^n C_r+^(n-1)C_r+...+^r C_r=^(n+1)C_(r+1) .

Prove that "^n C_r+^(n-1)C_r+...+^r C_r=^(n+1)C_(r+1) .

Prove that .^(n)C_(0) - ^(n)C_(1) + .^(n)C_(2)- ^(n)C_(3) + "…" + (-1)^(r) + .^(n)C_(r) + "…" = (-1)^(r ) xx .^(n-1)C_(r ) .

Prove that ""^(n-2)C_r+2* ""^(n-2)C_(r-1)+ ""^(n-2)C_(r-2)=""^nC_r