Home
Class 12
MATHS
sin^(10)x+cos^(10)x=29/16cos^4 2x...

`sin^(10)x+cos^(10)x=29/16cos^4 2x`

Text Solution

Verified by Experts

`sin^(10) x+cos^(10)x=29/16 cos^(4) 2x`
`rArr ((1- cos 2x)/2)^(5) + ((1+cos 2x)/2)^(5) =29/16 cos^(4) 2x`
Let `cos 2x=t`. Then
`((1-t)/2)^(5)+((1+t)/2)^(5) =29/16 t^(4)`
or `24 t^(4)-10 t^(2) -1=0`
or `(2t^(2) -1) (12 t^(2) +1) =0`
or `t^(2) =1/2`
or `cos^(2) 2x=1/2 =(1/sqrt(2))^(2)=("cos" pi/4)^(2)`
or `2x=n pi pm pi/4, n in Z`
or `x= (n pi)/2 pm pi/8, n in Z`
Promotional Banner

Similar Questions

Explore conceptually related problems

Number of solutions of equation 16(sin^10x+cos^10x)=29 cos^4 2x in interval [-pi,pi] is

If sin^(10) x - cos^(10)x=1 then x =

If sinx + sin^(2)x =1 then cos^(12)2x + 3cos^(10)x+3cos^(8)x + cos^(6)x =

2cosx-cos3x-cos5x= ............... A) 16 cos ^(3) x sin ^(2) x B) 16 sin^(2) x cos ^(2) x C) 4 cos ^(2) x sin ^(2) x D) 4 sin ^(2) x cos ^(2)x

Solve the equation 5sin^(2)x-7sin x cos x+16cos^(2)x=4

if sin x+sin^(2)x=1 then cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x=

If cos x + cos^(2) x =1 , " then " sin^(12) x + 3 sin^(10)x + 3sin^(8) x + sin^(6) x =