Home
Class 12
MATHS
loga/(y-z)=logb/(z-x)=logc/(x-y) then va...

`loga/(y-z)=logb/(z-x)=logc/(x-y)` then value of `abc=`

Promotional Banner

Similar Questions

Explore conceptually related problems

(log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y) then value of abc=

If (log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y) the value of a^(y+z)*b^(z+x)*c^(x+y) is

log a/(y-z)=log b/(z-x)=logc/(x-y), then a^xb^yc^z is equal to

if loga/(b-c)=logb/(c-a)=logc/(a-b) then find the value of a^ab^bc^c

If (loga)/(y+z)=(log b)/(z+x)=(log c)/(x+y) show that (b/c )^(x)(c /a)^(y)(a/b)^z=1

If y=a^(1/(1-log_a x)), z=a^(1/(1-log_a y)), then the value of a^(1/(1-log_a z)) is (i) x/y (ii)y/x (iii)z/y (iv) x

Prove that 1/(log_a P)+1/(log_b P)+1/(log_c P)=1/(log_x P) where, abc=x

If x(x+y+z)=9,y(x+y+z)=16and z(x+y+z)=144 then value of x will be?