Home
Class 12
MATHS
If A=[[0,-tan(theta/2)],[tan(theta/2),0]...

If `A=[[0,-tan(theta/2)],[tan(theta/2),0]](theta!=npi,n in Z),B=[[costheta,-sintheta],[sintheta,costheta]]` and `I=[[1,0],[0,1]]`, then the value of `(2I)/(costheta+1)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If sintheta_1sintheta_2-costheta_1costheta_2+1=0, then the value of tan((theta_1)/2)cot((theta_2)/2) is equal to

If sintheta_(1)sintheta_(2)-costheta_(1)costheta_(2)+1=0 , then the value of tan(theta_(1)//2)cot(theta_(2)//2) is always equal to

Prove that int_0^(pi/2)(costheta-sintheta)/(1+sintheta.costheta)d theta=0.

Verify that A(adjA)=I when : A=[{:(cos theta, -sintheta,0),(sintheta,costheta,0),(0,0,1):}]

2-cos^(2)theta =3 sintheta costheta , sintheta ne cos theta , then the value of tan theta is

If sintheta+costheta=1 , then the value of sin(2theta) is

If sintheta_1sintheta_2-costheta_1costheta_2+1=0, then the value of tan((theta_1)/2)cot((theta_2)/2) is equal to -1 (b) 1 (c) 2 (d) -2

Show that costheta [[costheta, sintheta],[-sintheta, cos theta]] + sin theta [[sintheta ,-cos theta],[costheta, sin theta]] =1