Home
Class 10
MATHS
(sec^2A)/(cos^2A)-(tan^2A)/(cot^2A)=1+2t...

`(sec^2A)/(cos^2A)-(tan^2A)/(cot^2A)=1+2tan^2A`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (sec^(2)A)/(cos^(2)A)-(tan^(2)A)/(cot^(2)A)=1+2tan^(2)A

Prove: (1-tan^2A)/(cot^2A-1)=tan^2A

Prove that, ( 1-tan^2A) / (cot^2A-1) = tan^2A

Prove the trigonometric identities: (1+cot A+tan A)(sin A-cos A)=(sec A)/(cos ec^(2)A)-(cos ecA)/(sec^(2)A)=sin A tan A-cot A cos A

Prove : (tan^2A)/(1+tan^2A)+(cot^2A)/(1+cot^2A)=1

cos ec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(2)A)(sec^(2)A cos ec^(2)A-1)

The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(2)A)(sec^(2)A cosec^(2)A-1) is equal to

The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(2)A)(sec^(2)A cosec^(2)A-1) is equal to

Prove the following identity : (1+ cot A+tan A) (sin A-cos A) =(secA)/(cosec^2 A)- (cosec A)/(sec^2A) .