Home
Class 12
MATHS
The solution of (dy)/(dx)=(a x+h)/(b y+k...

The solution of `(dy)/(dx)=(a x+h)/(b y+k)` represent a parabola when (a) (a) ` a=0,b!=0` (b)` a!=0,b!=0` (c) ` b=0,a!=0` (d) ` a=0,b in R `

Promotional Banner

Similar Questions

Explore conceptually related problems

the solution of the differential equation dy/dx = ax + b , a!=0 represents

Verify y =a/x+b is solution of x (d ^2 y)/(dx ^(2)) + 2 (dy)/(dx) = 0

If f(x)=a|sin x|+be^(|x|)+c|x|^(3) and if f(x) is differentiable at x=0, then a=b=c=0( b) a=0,quad b=0;quad c in R(c)b=c=0,quad a in R(d)c=0,quad a=0,quad b in R

If 2x-3y=7 and (a+b)x-(a+b-3)y=4a+b represent coincident lines,then a and b satisfy the equation a+5b=0 (b) 5a+b=0 (c) a-5b=0 (d) 5a-b=0

If a\ a n d\ b are two numbers such that a b\ =\ 0 , then (a) a\ =\ 0\ a n d\ b\ =\ 0 (b) a\ =\ 0\ or\ b\ =\ 0 (c) a\ =\ 0\ a n d\ b!=0 (d) b\ =\ 0\ a n d\ a!=0

y=ae^(-(1)/(x))+b is a solution of (dy)/(dx)=(y)/(x^(2)), then ( a) a in R( b) b=0(c)b=1(d)a takes finite number of values

Let f(x)=a+b|x|+c|x|^(4), where a,b, and c are real constants.Then,f(x) is differentiable at x=0, if a=0( b) b=0 (c) c=0( d) none of these

Let f(x)=a+b|x|+c|x|^(4), where a,b and c are real constants.Then,f(x) is differentiable at x=0, if a=0 (b) b=0( c) c=0(d) none of these

The equation to the normal to the curve y=sinx at (0,\ 0) is x=0 (b) y=0 (c) x+y=0 (d) x-y=0