Home
Class 12
MATHS
y=ae^(-1/x)+b is a solution of dy/dx=y/x...

`y=ae^(-1/x)+b` is a solution of `dy/dx=y/x^2`,then (a)`ainR` (b)`b=0` (c)`b=1` (d)`a` takes finite number of values

Promotional Banner

Similar Questions

Explore conceptually related problems

y=ae^(-(1)/(x))+b is a solution of (dy)/(dx)=(y)/(x^(2)) when

Verify y =a/x+b is solution of x (d ^2 y)/(dx ^(2)) + 2 (dy)/(dx) = 0

for what values of a and b,the equations 5x+8y=7 and (a+b)x+(a-b)y=(2a+b+1) have infinite number of solutions

y = Ae^(x) + Be^(-2x) is a solution of the D.E. (d^(2)y)/(dx^(2) )+ (dy)/(dx) -2y = 0

If y=e^( sinx ) the value of (dy)/(dx) at x=(pi)/(2) is , (a) 1 , (b) e , (c) 0 ,(d) not defined .

xy=(x+y)^(n) and (dy)/(dx)=(y)/(x) thenn =1b.2c3d.4

If y_(1)(x) and y_(2)(x) are two solutions of (dy)/(dx)+f(x)y=r(x), then y_(1)(x)+y_(2)(x) is solution of : (A) (dy)/(dx)+f(x)y=0 (B) (dy)/(dx)+2f(x)y=r(x)(C)(dy)/(dx)+f(x)y=2r(x)(D)(dy)/(dx)+2f(x)y=2r(x)

The system of equations -2x+y+z=ax-2y+z=b,x+y-2z=c, has: (a)no solution if a+b!=0 (b)unique solution if a+b+c=0 (c)infinite number of solution if if a+b+c=0 (d)none of these

Verify that y=ae^(3x)+be^(-x) is a solution of differential equation (d^2y)/(dx^2)-2(dy)/(dx)-3y=0