Home
Class 11
MATHS
If x=9^(1/3) 9^(1/9) 9^(1/27) ......ad ...

If `x=9^(1/3) 9^(1/9) 9^(1/27) ......ad` inf `y= 4^(1/3) 4^(-1/9) 4^(1/27) ...... ad` inf and `z= sum_(r=1)^oo (1+i)^-r` then , the argument of the complex number `w = x+yz` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=9^(1/3) 9^(1/9) 9^(1/27) ......and if y= 4^(1/3) 4^(-1/9) 4^(1/27) ...... and if z= sum_(r=1)^oo (1+i)^-r then , the argument of the complex number w = x+yz is

If x=9^(1/3) 9^(1/9) 9^(1/27) ......oo y= 4^(1/3) 4^(-1/9) 4^(1/27) ...... oo and z= sum_(r=1)^oo (1+i)^-r then , the argument of the complex number w = x+yz is

If x=9^(1/3) 9^(1/9) 9^(1/27) ...-> ∞ , y= 4^(1/3) 4^(-1/9) 4^(1/27) ....-> ∞ and z= sum_(r=1)^oo (1+i)^-r then , the argument of the complex number w = x+yz is

If y= x^(1/3).x^(1/9).x^(1/27)...oo then y=?

if x=9^(1/3)9^(1/9)9^(1/27)…..infty,y=4^(1/3)4^(1/9)4^(1/27)…..infty and z=underset(r=1)oversetinftysum(1+i)^(-r) then arg(x+yz) is equal to

If x=9^(1//3)xx9^(1//9)xx 9^(1//27)xx….,y=4^(1//3)xx-4^(1//9)xx 4^(1//27)x…., and z=Sigma_(r=1)^(oo) (1+i)^(r) then arg (x+yz) is equal to

If x=9^(1/3)9^(1/9)9^(1/27)......oo , y=4^(1/3)4^(-1/9)4 , z=sum_(r=1)^(oo)(1+i)^(-r) ,then arg (x+yz) is equal to:

Find the vaue of 9^(1/3)9^(1/9)9^(1/27)...oo

The value of 9^(1/3), 9^(1/9).9^(1/27)…………..upto infty is:

Find the value of 9^(1/3), 9^(1/9). 9^(1/27)...up to oo.