Home
Class 12
MATHS
Let f(x),xgeq0, be a non-negative co...

Let `f(x),xgeq0,` be a non-negative continuous function, and let `F(x)=int_0^xf(t)dt ,xgeq0,` if for some `c >0,f(x)lt=cF(x)` for all `xgeq0,` then show that `f(x)=0` for all `xgeq0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x),x>=0, be a non-negative continuous function.If f'(x)cos x =0, then find f((5 pi)/(3))

Let f(x)=int_(0)^(1)|x-t|dt, then

If a continuous function f satisfies int_(0)^(f(x))t^(3)dt=x^(2)(1+x) for all x>=0 then f(2)

The function f:[0,1]rarr R is continuous on [0,1] and int_(0)^(x)f(t)dt=int_(x)^(1)f(t)dt . Prove that f(x)=0 for all x in[0,1]