Home
Class 12
MATHS
A function y=f(x) satisfies (x+1)f^(pri...

A function `y=f(x)` satisfies `(x+1)f^(prime)(x)-2(x^2+x)f(x)=((e^x)^2)/((x+1)),AAx >-1.` If `f(0)=5,` then `f(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

A function y=f(x) satisfying f'(x)=x^(-(3)/(2)),f'(4)=2 and f(0)=0 is

Find function f(x) satisfying f(x)+f((1)/(1-x))=(2(1-2x))/(x(1-x))AA x in R-{0,1}

A function y=f(x) satisfies f''(x)=-(1)/(x^(2))-pi^(2)sin(pi x)f'(2)=pi+(1)/(2) and f(1)=0 then value of f((1)/(2)) is

A polynomial function f(x) satisfies f(x)f((1)/(x))-2f(x)+2f((1)/(x));x!=0 and f(2)=18 ,then f(3) is equal to

A function y=f(x) satisfies f(x)=-(1)/(x^(2))-pi^(2)sin(pi x);f'(2)=pi+(1)/(2) and f(1)=0. The value of f((1)/(2))

For x in R-{1}, the function f(x) satisfies f(x)+2f((1)/(1-x))=x. Find f(2)

If f(x) is a function satisfying f(x)-f(y)=(y^(y))/(x^(x))f((x^(x))/(y^(y)))AA x,y in R^(*) and f'(1)=1, then find f(x)

If a function 'f' satisfies the relation f(x)f^('')(x)-f(x)f^(')(x) -f^(')(x)^(2)=0 AA x in R and f(0)=1=f^(')(0) . Then find f(x) .

Consider the function y=f(x) satisfying the condition f(x+(1)/(x))=x^(2)+(1)/(x^(2))(x!=0)