Home
Class 11
MATHS
If theta is eliminated from the equatio...

If `theta` is eliminated from the equations `x=a"cos"(theta-alpha)` and `y=bcos(theta-beta),` then `(x^2/a^2)+(y^2/b^2)-(2xy)/(ab)cos(alpha-beta)` is equal to (a)`sec^2(alpha-beta)` (b) `cos e c^2(alpha-beta)` (c)`cos^2(-beta)` (d) `sin^2(alpha-beta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If theta is eliminated from the equations x=a cos(theta-alpha) and y=b cos(theta-beta) , then x^(2)/a^(2) + y^(2)/b^(2) -(2xy)/(ab) cos(alpha-beta) is equal to:

If theta is eliminated from the equations x=a"cos"(theta-alpha) and y=bcos(theta-beta), then (x^2/a^2)+(y^2/b^2)-(2xy)/(ab)cos(alpha-beta) is equal to (a) sec^2(alpha-beta) (b) cos e c^2(alpha-beta) (c) cos^2(alpha-beta) (d) sin^2(alpha-beta)

If theta is eliminated from the equations x=a"cos"(theta-alpha) and y=bcos(theta-beta), then (x^2/a^2)+(y^2/b^2)-(2xy)/(ab)cos(alpha-beta) is equal to (a) sec^2(alpha-beta) (b) cos e c^2(alpha-beta) (c) cos^2(alpha-beta) (d) sin^2(alpha-beta)

If cos(theta-alpha)=a and cos(theta-beta)=b then the value of sin^(2)(alpha-beta)+2ab cos(alpha-beta)

If cos (theta -alpha) =a, sin (theta - beta) =b, then cos ^(2) (alpha - beta) + 2 ab sin (alpha - beta) is equal to

If cos (theta -alpha) =a, sin (theta - beta) =b, then cos ^(2) (alpha - beta) + 2 ab sin (alpha - beta) is equal to

s(theta-alpha)=a and cos(theta-beta)=b, then sin^(2)(alpha-beta)+2ab cos(alpha-beta)=

If cos(theta - alpha)=a, cos(theta-beta)=b , then sin^(2)(alpha -beta) + 2abcos(alpha-beta)=0

If cos(theta-alpha) = a and cos(theta-beta) = b then the value of sin^2(alpha-beta) + 2ab cos(alpha-beta)