Home
Class 12
MATHS
If |(a^2,b^2,c^2),((a+lambda)^2,(b+lambd...

If `|(a^2,b^2,c^2),((a+lambda)^2,(b+lambda)^2,(c+lambda)^2),((a-lambda)^2,(b-lamda)^2,(c-lambda)^2)|=klambda|(a^2,b^2,c^2),(a,b,c),(1,1,1)|lambda!=0` then `k` is equal to : (A) `4 lambda abc ` (B) `-4 lambda abc ` (C) `4 lambda^2` (D) `-4 lambda^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If |(a^(2), b^(2), c^(2)),((a+lambda)^(2), (b+lambda)^(2), (c+lambda)^(2)),((a-lambda)^(2), (b-lambda)^(2), (c-lambda)^(2))|=klambda|(a^(2), b^(2),c^(2)),(a,b,c),(1,1,1)|,lambda ne 0 then k is equal to

If [(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2))]=Alambda^(2)+Blambda+C, where A, B and C are matrices then A+B=

If plambda ^(4)+qlambda^(3)+rlambda ^(2)+ s lambda +t= |{:(lambda^(2)+3,lambda -1, lambda +3),(lambda^(2)+1,2-lambda ,lambda-3),(lambda^(2)-3,lambda+4,3lambda):}| then t is equal to : a)33 b)22 c)21 d)57

If [(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2))]=Alambda^(2)+Blambda+C , where A, B and C are matrices then find matrices B and C.

If [(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2))]=Alambda^(2)+Blambda+C , where A, B and C are matrices then find matrices B and C.

If [(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2))]=Alambda^(2)+Blambda+C , where A, B and C are matrices then find matrices B and C.

If [(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2))]=Alambda^(2)+Blambda+C , where A, B and C are matrices then find matrices B and C.

If |(a^2+lambda^2, a b+clambda, ca-blambda), (a b-clambda, b^2+lambda^2, b c+a), (ca+blambda, bc-alambda, c^2+lambda^2)| |(lambda, c, -b), (-c,lambda, a), (b,-a,lambda)|=(1+a^2+b^2+c^2)^3 , then he value of lambda is a. 8 b. 27 c. 1 d. -1

If (a - lambda b) . (b - 2c) xx (c + 3a) = 0 then lambda =

If |[lambda^(2),-lambda,2 lambda-1],[lambda+2,1-lambda,lambda],[lambda+2,lambda+1,-lambda]|=a lambda^(4)+b lambda^(3)+c lambda^(2)+d lambda+e Then values of a, b, c, d and e are.