Home
Class 11
MATHS
Q. Prove that from the equality sin^4 al...

Q. Prove that from the equality `sin^4 alpha/a+cos^4 alpha/b=1/(a+b)` follows the relation; `sin^8 alpha/a^3+cos^8 alpha/b^3=1/(a+b)^3.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that from the equality (sin^(4)alpha)/(a)+(cos^(4)alpha)/(b)=(1)/(a+b) follow the relation :(sin^(8)alpha)/(a^(3))+(cos^(8)alpha)/(b^(3))=(1)/((a+b)^(3))

If sin^4alpha/a+cos^4alpha/b=1/(a+b) ,then show that sin^8alpha/a^3+cos^8alpha/b^3=1/((a+b)^3) .

If (sin^4alpha)/(a)+(cos^4alpha)/(b)=1/(a+b) show that, (sin^8alpha)/(a^3)+(cos^8alpha)/(b^3)=1/(a+b)^3

If sin^4alpha/a+cos^4alpha/b=1/(a+b) show that sin^8alpha/a^3+cos^8alpha/b^3=1/((a+b)^3)

If (sin^(4)alpha)/a +(cos^(4)alpha)/b = 1/(a+b) , show that sin^(8)alpha/a^(3) +cos^(8)alpha/b^(3) =1/(a+b)^(3)

If (sin alpha )/(a) = ( cos alpha )/(b) , then a sin 2alpha + b cos 2 alpha =

If (sin alpha)/(a)=(cos alpha)/(b), then a sin2 alpha+b cos2 alpha=

Eliminate alpha between the equations: (sin^2 alpha)/(cos alpha)=a^3 and (cos^2 alpha)/(sin alpha)= b^3 .

Prove that sin^(4) alpha + cos^(4) alpha + 2 sin^(2) alpha cos^(2) alpha = 1 .

Prove that cos 4theta–cos 4alpha = 8(cos theta-cos alpha)(cos theta+ cos alpha )(cos theta -sin alpha)(cos theta+sin alpha)