Home
Class 11
MATHS
If 2^((3)/("log"(3)x)) = (1)/(64), then ...

If `2^((3)/("log"_(3)x)) = (1)/(64)`, then x =

Promotional Banner

Similar Questions

Explore conceptually related problems

If "log"_(8){"log"_(2) "log"_(3) (x^(2) -4x +85)} = (1)/(3) , then x equals to

If "log"_(8){"log"_(2) "log"_(3) (x^(2) -4x +85)} = (1)/(3) , then x equals to

If 9^("log"3("log"_(2) x)) = "log"_(2)x - ("log"_(2)x)^(2) + 1, then x =

If 9^("log"_3("log"_(2) x)) = "log"_(2)x - ("log"_(2)x)^(2) + 1, then x =

If log_(x)(256)=(8)/(5), then x is equal to (1)64(2)16(3)32

If xy^(2)=4and(log)_(3)((log)_(2)x)+(log)_((1)/(3))((log)_((1)/(2))y)=1 then x equals (a)4(b)8(c)16(d)64

If log x - (2)/(3) log x = 1, then x = ______.

Match the column Column I, Column II If x=3,t h e n(log)_4(2(log)_3(1+(log)_2(1+3Log_3x))) is equal to, p. 3 If x=100 , then 3^((log)_3logsqrt(x))-logx+log^2x is equal to, q. 1 If one of the root of the equation 2((log)_xsqrt(5))^2-3(log)_x(a)+1=0 is sqrt(5) , then the other root is, r. 1/2 If (log)_2(4. 3^x-6)-(log)_2(9^x-6)=1, then x is equal to, s. 5

log(x) -log(2x-3)=1 then x = ?

If int_(log 2)^(x)(1)/(e^(x)-1)dx = log""(3)/(2) , show that x = log 4