Home
Class 11
MATHS
If f(x)=log(e)x, then prove that :f(xyz)...

If `f(x)=log_(e)x,` then prove that `:f(xyz)=f(x)+f(y)+f(z)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = log_e ((1-x)/(1+x)) , then prove that f(x) + f(y) = f((x + y)/(1 + xy))

If f(x)=5^x , then prove : f(x+y)=f(x).f(y)

If f(x) = (x-1)/(x+1) , then prove that (f(x)-f(y))/(1+f(x)f(y))=(x-y)/(1+xy) .

If f(x)=log_(e)x and g(x)=e^(x) , then prove that : f(g(x)}=g{f(x)}

If f(x)=log_(e)x and g(x)=e^(x) , then prove that : f(g(x)}=g{f(x)}

If f(x)=log_ex and g(x)=e^x , prove that f{g(x)}=g{f(x)} .

If f (x) = log_e ((1+x)/(1-x)) , prove that: f (x) +f (y)= f ((x+y)/(1+xy)) .

If f(x) = log_e x, x > 0 , prove that : f (uvw) = f (u) + f (v) +f (w).

If 3f(x)-f(1/x)=log_(e)x^(4)(xgt0) , then prove that f(e^(x))=x .

f(x)=log_(e)x, find value of f(1)