Home
Class 11
MATHS
If alpha and beta are two positive acute...

If `alpha` and `beta` are two positive acute angles satisfying ` alpha - beta = 15^@ ` and `sin alpha = cos 2beta` then find the value of `alpha+ beta`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are two positive acute angles satisfying alpha-beta=15^(@) and sin alpha=cos2 beta then the value of alpha+beta

If alpha and beta are two positive acute angles satisfying alpha-beta=15^(@) and sin alpha=cos2 beta then the value of alpha+beta is equal to -(A)35^(@) (B) 55^(@) (C) 65^(@) (D) 85^(@)

If cos alpha + cos beta = 0 = sin alpha + sin beta, then value of cos 2 alpha + cos 2 beta is

if alpha and beta satisfy sin alpha cos beta=-(1)/(2), then the greatest value of 2cos alpha sin beta is

alphaand beta are the positive acute angles and satisfying equation 5sin2 beta=3sin2 alpha andtan beta=3tan alpha simultaneously.Then the value of tan alpha+tan beta is

If alpha, beta, gamma are positive acute angles, prove that sin alpha+sin beta+ sin gamma gt sin (alpha+ beta+ gamma)

If alpha+beta=90^(@),alpha=2beta , then find the value of cos^(2)alpha+sin^(2)beta .