Home
Class 12
MATHS
Using properties of determinant. Prove t...

Using properties of determinant. Prove that `|[sinA,cosA,sinA+cosB],[sinB,cosA,sinB+cosB],[sinC,cosA,sinC+cosB]|=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

The determinant |{:(sinA,cosA,sinA+cosB),(sinB,cosA,sin+cosB),(sinC,cosA,sinC+cosB):}| is equal to zero

Prove that, |[sin A, cosA, sin(A+theta)],[sinB, cosB, sin(B+theta)],[sinC, cosc, sin(C+theta)]| =0

Prove that: sin(A+B)+cos(A-B)=(sinA+cosA)(sinB+cosB)

If |[cos(A+B), -sin(A+B), cos2B], [sinA, cosA, sinB], [-cosA, sinA, cosB]|=0 , then B=

If |(cos(A+B),-sin(A+B),cos2B),(sinA,cosA,sinB),(-cosA,sinA,cosB)|=0 then B =

Prove that (sin A+sinB)/(cosB-cosA)=(cos A+cosB)/(sinA-sinB) .

If |{:(cos(A+B),-sin(A+B),cos2B),(sinA,cosA,sinB),(-cosA,sinA,cosB):}|=0 then B =

Prove that: (cosA+cosB)^2+(sinA-sinB)^2=4cos^2((A+B)/2) .