Home
Class 12
MATHS
lim(x->0) (sin[cosx])/(1+cos[cosx]) is, ...

`lim_(x->0) (sin[cosx])/(1+cos[cosx])` is, where [ . ] is GIF

Promotional Banner

Similar Questions

Explore conceptually related problems

(lim)_(x->0)(cos2x-1)/(cosx-1)

lim_(x->0)(sin[sec^2x])/(1+[cosx]), where [*] denotes greatest integral function, is

lim_(x rarr0)(sin^2x)/(1-cosx)

lim_(x->0)(1/x)^(1-cosx)

lim_(xto0)(1-cosx)/x^(2)

lim_(x to 0) (cos5x-cos7x)/(cosx-cos5x)

Evaluate lim_(xto0) (sin[cosx])/(1+[cosx]) ( [.] denotes the greatest integer function).

lim_(xto0)(sin[cosx])/(1+[cosx]) , ([.] denotes the greatest integer function)

Evaluate lim_(xto0) (sin[cosx])/(1+[cosx]) ( [.] denotes the greatest integer function).

lim_(xrarr0)(cos 2x-1)/(cosx-1)