Home
Class 12
MATHS
If the lines vecr=x(vecb/(|vecb|)+vecc/(...

If the lines `vecr=x(vecb/(|vecb|)+vecc/(|vecc|))and vecr=2vecb+y(vecc-vecb)` intersect at a point with position vector `z(vecb/(|vecb|)+vecc/(|vecc|)),` then

Promotional Banner

Similar Questions

Explore conceptually related problems

The lines vecr = vec a + lamda ( vecb xx vecc ) and vecr = vecb + mu ( vecc xx veca ) will intersect if

The two lines vecr=veca+veclamda(vecbxxvecc) and vecr=vecb+mu(veccxxveca) intersect at a point where veclamda and mu are scalars then (A) veca,vecb,vecc are non coplanar (B) |veca|=|vecb|=|vecc| (C) veca.vecc=vecb.vecc (D) lamda(vecb xxvecc)+mu(vecc xxveca)=vecc

The two lines vecr=veca+veclamda(vecbxxvecc) and vecr=vecb+mu(veccxxveca) intersect at a point where veclamda and mu are scalars then (A) veca,vecb,vecc are non coplanar (B) |veca|=|vecb|=|vecc| (C) veca.vecc=vecb.vecc (D) lamda(vecbxvecc)+mu(veccxveca)=vecc

The vectors veca-vecb,vecb-vecc,vecc-veca are

If veca, vecb, vecc and veca', vecb', vecc' form a reciprocal system of vectors then veca.veca'+vecb.vecb'+vecc.vecc'=

If veca, vecb, vecc and veca', vecb', vecc' form a reciprocal system of vectors then veca.veca'+vecb.vecb'+vecc.vecc'=