Home
Class 10
MATHS
If x^2-5x+p=10 and product of roots is -...

If `x^2-5x+p=10` and product of roots is -4 then `p=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If p is a constant and f(x) =|(x^2,x^3,x^4),(2,3,6),(p,p^2,p^3)| if f'(x)=0 have roots alpha,beta , then (1) alpha and beta have opposite sign and equal magnitude at p= root (3) (2) At p=1 , f''(x)=0 represent an identity (3) at p=2 ,product of roots are unity (4) at p=- (root 3) product of roots are positive

If the sum of the roots and the product of roots of polynomial px^(2)-5x+q are both equal to 10, then find values of p and q

If the roots of the equation 1/ (x+p) + 1/ (x+q) = 1/r are equal in magnitude but opposite in sign, show that p+q = 2r & that the product of roots is equal to (-1/2)(p^2+q^2) .

If the roots of the equation 1/ (x+p) + 1/ (x+q) = 1/r are equal in magnitude but opposite in sign, show that p+q = 2r & that the product of roots is equal to (-1/2)(p^2+q^2) .

If the roots of the equation 1/ (x+p) + 1/ (x+q) = 1/r are equal in magnitude but opposite in sign, show that p+q = 2r & that the product of roots is equal to (-1/2)(p^2+q^2) .

if the roots of the equation 1/ (x+p) + 1/ (x+q) = 1/r are equal in magnitude but opposite in sign, show that p+q = 2r & that the product of roots is equal to (-1/2)(p^2+q^2) .

The product of the sines of the angles of a triangle is p and the product of their cosines is qdot Show that the tangents of the angles are the roots of the equation q x^3-p x^2+(1+q)x-p=0.

The product of the sines of the angles of a triangle is p and the product of their cosines is qdot Show that the tangents of the angles are the roots of the equation q x^3-p x^2+(1+q)x-p=0.

The product of the sines of the angles of a triangle is p and the product of their cosines is qdot Show that the tangents of the angles are the roots of the equation q x^3-p x^2+(1+q)x-p=0.

The product of the sines of the angles of a triangle is p and the product of their cosines is qdot Show that the tangents of the angles are the roots of the equation q x^3-p x^2+(1+q)x-p=0.