Home
Class 10
MATHS
Prove that (sin^(2)A)/(cos^(2)A)+1=(tan^...

Prove that `(sin^(2)A)/(cos^(2)A)+1=(tan^(2)A)/(sin^(2)A)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (sin2A)/(1+cos2A)=tan A

Prove that (sin^2A)/(cos^2A)+(cos^2A)/(sin^2A)=1/(sin^2Acos^2A)-2 .

Prove that : (cos ^(2) A + tan ^(2) A - 1 )/( sin ^(2) A ) = tan ^(2) A .

Prove that sin^(2) A+ sin^(2) A tan^(2) A = tan^(2) A .

Prove :sin^(2)A cot^(2)A+cos^(2)A tan^(2)A=1

prove that tan^(2)A-sin^(2)A=tan^(2)A*sin^(2)A

Prove that :(tan(A+B))/(cot(A-B))=(sin^(2)A-sin^(2)B)/(cos^(2)A-sin^(2)B)

Prove that (1+sin2A)/(cos2A)=(cos A+sin A)/(cos A-sin A)=tan((pi)/(4)+A)

Prove : (1-cos^(2)A) *sec ^(2)B + tan^(2)B (1- sin^(2)A) = sin^(2) A + tan^(2)B

Prove that (1)sin2A=2sin A cos A(2)cos2A=cos^(2)A-sin^(2)A