Home
Class 12
MATHS
Letf(x)=x^(135)+x^(125)-x^(115)+x^(5)+1....

Let`f(x)=x^(135)+x^(125)-x^(115)+x^(5)+1`. If `f(x)` divided by `x^(3)-x`, then the remainder is some function of `x` say `g(x)`. Then `g(x)` is an

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=x^(135)+x^(125)-x^(115)+x^(5)+1. If f(x) is divided by x^(3)-x then the remainder is some function of x say g(x). Find the value of g(10)

If f(x) is divided by g(x), then find remainder. When f(x)=x^(4)-5x+6,g(x)=-x^(2)+1

Let g(x) be the inverse of the function f(x) and f'(x)=(1)/(1+x^(3)) then g'(x) equals

Let g(x) be the inverse of the function f(x), and f'(x)=1/(1+x^3) then g'(x) equals

Let g(x) be the inverse of the function f(x) ,and f'(x) 1/(1+ x^(3)) then g(x) equals

f(x)=4x^3-12 x^2+14 x-3,\ g(x)=2x-1 divide f(x) with g(x) and find the remainder.

Let f(x) = x + cos x + 2 and g(x) be the inverse function of f(x), then g'(3) equals to ........ .

Let f(x) = x + cos x + 2 and g(x) be the inverse function of f(x), then g'(3) equals to ........ .

Let f(x) = x + cos x + 2 and g(x) be the inverse function of f(x), then g'(3) equals to ........ .