Home
Class 10
MATHS
In DeltaABC, ray BD bisects /ABC. A-D-C,...

In `DeltaABC`, ray `BD` bisects `/_ABC`. `A-D-C`, side `DE||` side `BC`, `A-E-B`.
Prove that, `(AB)/(BC)=(AE)/(EB)`.
Complete the activity by filling the boxes.

In `DeltaABC`, ray `BD` is the bisector of `/_ABC`
`:.(AB)/(BC)=square`.......`(I)` (By angle bisector theorem)
In `DeltaABC`, seg `DE||` side `BC`
`:.(AE)/(EB)=(AD)/(DC)`........`(II)` `square`
`:.(AB)/(square)=(square)/(EB)`.......[From `(I)` and `(II)`]

Promotional Banner

Similar Questions

Explore conceptually related problems

In Delta ABC , ray BD bisects angleABC . A-D-C, side DE abs() side BC, A-E-B, then prove that (AB)/(BC) = (AE)/(EB) .

In Delta ABC , ray BD bisects angleABC . A-D-C , side DEabs()side BC , A-E-B , then prove that (AB)/(BC) = (AE)/(EB) .

In DeltaABC, ray BD bisects angleABC,A-D-C, Side DE|| Side BC. A-E-B. then prove that AB:BC=AE:EB

In DeltaABC ray BD bisects angleABC " "A-D-C,"side DE || side BC" A-E-B "then prove",(AB)/(BC)=(AE)/(EB)

AD is the bisector of /_BAC of /_\ABC , where D is a point on BC. Prove that (BD)/(DC)=(AB)/(AC) .

In ABC, ray AD bisects /_A and intersects BC in D. If BC=a,AC=b and AB=c prove that BD=(ac)/(b+c)( ii) (ab)/(b+c)

In DeltaABC , D is the midpoint of side AB. Line DE|| side BC. A-E-C . Prove that pont E is the midpoint of side AC.

In DeltaABC ,ray BD bisects angleABC and ray CE bisects angleACB . If seg AB cong seg AC, then prove that ED abs() BC.

In DeltaABC ,ray BD bisects angleABC and ray CE bisects angleACB . If seg AB cong seg AC, then prove that ED abs() BC.

In DeltaABC Seg BD bisects /_ABC . If AB=x, BC=x+5, AD=x-2, DC=x+2 , then find the value of x .