Home
Class 12
MATHS
In a triangle ABC tanA+tanB+tanC>=P then...

In a triangle ABC `tanA+tanB+tanC>=P` then `P=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If in a triangle ABC, tanA+tanB+tanC>0 the triangle is (A) acute angled triangle (B) obtuse angled (C) right angled (D) none of these

In a triangle ABC, tanA+tanB+tanC=6 and tanA. tan B = 3, then find the nature of triangle.

In a triangle ABC, tanA + tanB + tanC = 9. If tan^2 A+ tan^2 B + tan^2 C= k then the least value of k^(9/7) is

Statement-1: In an acute angled triangle minimum value of tan alpha + tanbeta + tan gamma is 3sqrt(3) . And Statement-2: If a,b,c are three positive real numbers then (a+b+c)/3 ge sqrt(abc) into in a triangleABC , tanA+ tanB + tanC= tanA. tanB.tanC

Statement-1: In an acute angled triangle minimum value of tan alpha + tanbeta + tan gamma is 3sqrt(3) . And Statement-2: If a,b,c are three positive real numbers then (a+b+c)/3 ge sqrt(abc) into in a triangleABC , tanA+ tanB + tanC= tanA. tanB.tanC

If, in a triangleABC , tanA =1 and tanB=2, then: tanC=

In a triangle, tanA + tanB + tanC = 6 and tanA tanB = 2 , then the values of tanA, tanB, tanC are :

If in a triangle ABC,tanA+tanB+tanC=6 and tanAtanB=2, then the triangle is acute angled triangle.

If in a triangle ABC, (tanA)/1= (tanB)/2 = (tanC)/3 then prove that 6sqrt(2a)=3sqrt(5b)=2sqrt(10)c

If in a triangle ABC, (tanA)/1= (tanB)/2 = (tanC)/3 then prove that 6sqrt(2a)=3sqrt(5b)=2sqrt(10)c