Home
Class 12
MATHS
If f(x)= int(0^(sinx) cos^(-1)t dt +int(...

If `f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2)` then ` f(pi//4)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_0^sinx cos^-1t dt+int_0^cosx sin^-1t dt, 0ltxltpi/2 , then f(pi/4)= (A) 0 (B) pi/sqrt(2) (C) 1 (D) pi/(2sqrt(2))

If f(x)=int_0^sinx cos^-1t dt+int_0^cosx sin^-1t dt, 0ltxltpi/2 , then f(pi/4)= (A) 0 (B) pi/sqrt(2) (C) 1 (D) none of these

int_(0)^(sin^(2)x) sin^(-1) sqrt(t) dt + int_(0)^(cos^(2)x) cos^(-1) sqrt(t) dt=

If f(x) =int_(0)^(x) {f(t)}^(-1)dt, " and " int_(0)^(1) {f(t}^(-1)dt=sqrt(2) , then f(x)=

If f (x) = int_(0) ^(x) (cos ^(4) t + sin^(4) t ) dt, f (x + pi) will be equal to

If f(x)=int_(0)^(pi)(t sin t dt)/(sqrt(1+tan^(2)xsin^(2)t)) for 0lt xlt (pi)/2 then

If f(x)=int_(0)^(pi)(t sin t dt)/(sqrt(1+tan^(2)xsin^(2)t)) for 0lt xlt (pi)/2 then

If f(x)=int_(0)^(pi)(t sin t dt)/(sqrt(1+tan^(2)xsin^(2)t)) for 0lt xlt (pi)/2 then