Home
Class 12
MATHS
If a,b in R^(+) then find Lim(nrarroo) ...

If `a,b in R^(+)` then find `Lim_(nrarroo) sum_(k=1)^(n) ( n)/((k+an)(k+bn))` is equal to

A

`(1)/(a-b) ln'(b(b+1))/(a(a+1))` if `a ne b`

B

`(1)/(a-b) ln'(a(b+1))/(b(a+1))` if `a ne b`

C

non existent if `a = b`

D

`(1)/(a(1+a))` if `a ne b`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} \sum_{k=1}^{n} \frac{n}{(k + an)(k + bn)} \), we will follow these steps: ### Step 1: Rewrite the Summation We start by rewriting the expression inside the summation: \[ \frac{n}{(k + an)(k + bn)} = \frac{n}{n^2 \left(\frac{k}{n} + a\right)\left(\frac{k}{n} + b\right)} = \frac{1}{n \left(\frac{k}{n} + a\right)\left(\frac{k}{n} + b\right)} \] ### Step 2: Change of Variable Let \( x = \frac{k}{n} \). Then, as \( k \) goes from \( 1 \) to \( n \), \( x \) goes from \( \frac{1}{n} \) to \( 1 \). The increment \( \Delta x = \frac{1}{n} \). Thus, we can rewrite the summation as: \[ \sum_{k=1}^{n} \frac{1}{n \left(\frac{k}{n} + a\right)\left(\frac{k}{n} + b\right)} \approx \sum_{k=1}^{n} \frac{1}{n} \cdot \frac{1}{(x + a)(x + b)} \] ### Step 3: Convert to Integral As \( n \to \infty \), the sum approaches the integral: \[ \int_{0}^{1} \frac{1}{(x + a)(x + b)} \, dx \] ### Step 4: Solve the Integral To solve the integral, we can use partial fraction decomposition: \[ \frac{1}{(x + a)(x + b)} = \frac{1}{b - a} \left( \frac{1}{x + a} - \frac{1}{x + b} \right) \] ### Step 5: Integrate Now we can integrate: \[ \int_{0}^{1} \left( \frac{1}{b - a} \left( \frac{1}{x + a} - \frac{1}{x + b} \right) \right) dx = \frac{1}{b - a} \left( \left[ \ln(x + a) \right]_{0}^{1} - \left[ \ln(x + b) \right]_{0}^{1} \right) \] Calculating the limits: \[ = \frac{1}{b - a} \left( \ln(1 + a) - \ln(a) - \ln(1 + b) + \ln(b) \right) \] \[ = \frac{1}{b - a} \left( \ln\left(\frac{1 + a}{a}\right) - \ln\left(\frac{1 + b}{b}\right) \right) \] \[ = \frac{1}{b - a} \ln\left(\frac{(1 + a)b}{(1 + b)a}\right) \] ### Final Answer Thus, the limit is: \[ \lim_{n \to \infty} \sum_{k=1}^{n} \frac{n}{(k + an)(k + bn)} = \frac{1}{b - a} \ln\left(\frac{(1 + a)b}{(1 + b)a}\right) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 2 Part - IV|9 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 3 Part - I|50 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE|Exercise Exercise 2 Part - II|23 Videos
  • COMBINATORICS

    RESONANCE|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|8 Videos
  • DPP

    RESONANCE|Exercise QUESTION|665 Videos

Similar Questions

Explore conceptually related problems

lim_ (n rarr oo) sum_ (k = 1) ^ (n) (k) / (n ^ (2) + k ^ (2)) is equals to

lim_(n rarr infty) sum_(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equal to

sum_(k =1)^(n) k(1 + 1/n)^(k -1) =

Find the value of lim_(n rarr oo)sum_(k=1)^(n)((k)/(n^(2)+k))

The value of Lim_(n rarr oo)sum_(k=1)^(n)(n-k)/(n^(2))cos((4k)/n) equals

lim_ (n rarr oo) sum_ (k = 0) ^ (n) ((1) / (nC_ (k)))

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

The value of I=lim_(nrarroo)Sigma_(r=1)^(n)(r)/(n^(2)+n+r) is equal to

lim_ (n rarr oo) sum_ (k = 1) ^ (n) (k ^ (2)) / (2 ^ (k))

S= lim_(nrarroo) sum_(k=0)^n 1/sqrt(n^2 + k ^2)

RESONANCE-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 2 Part - III
  1. Given an even function f defined and integrable everywhere and periodi...

    Text Solution

    |

  2. Let f : R rarr R be defined as f(x) = int(-1)^(e^(x)) (dt)/(1+t^(2)) +...

    Text Solution

    |

  3. If a,b in R^(+) then find Lim(nrarroo) sum(k=1)^(n) ( n)/((k+an)(k+bn...

    Text Solution

    |

  4. Let f(x) = int(x)^(x+(pi)/(3))|sin theta|d theta(x in [0,pi])

    Text Solution

    |

  5. If f(x) in inegrable over [1,2] then int(1)^(2) f(x) dx is equal to :

    Text Solution

    |

  6. Let I(n) = int(0)^(1//2)(1)/(sqrt(1-x^(n))) dx where n gt 2, then

    Text Solution

    |

  7. If f(x) = 2^(|x|) where [x] denotes the fractional part of x. Then wh...

    Text Solution

    |

  8. Let f(x) = int(0)^(x)|2t-3|dt, then f is

    Text Solution

    |

  9. Let f(x) = int(0)^(pi)(sinx)^(n) dx, n in N then

    Text Solution

    |

  10. Let f(x) be a function satisfying f(x) f(x+2) = 10 AA x in R, then

    Text Solution

    |

  11. Let I(n) = int(0)^(pi)(sin^(2)(nx))/(sin^(2)x)dx, n in N then

    Text Solution

    |

  12. Let f(x) be a continuous function and I = int(1)^(9) sqrt(x)f(x) dx, t...

    Text Solution

    |

  13. Let A = int(1)^(e^(2))(lnx)/(sqrt(x))dx, then

    Text Solution

    |

  14. Let f(a,b) = int(a)^(b)(x^(2)-4x+3)dx, (bgt 0) then

    Text Solution

    |

  15. Let I = int(2)^(oo)((2x)/(x^(2)+1)- (1)/(2x+1)) dx & I is a finite r...

    Text Solution

    |

  16. Let f(x) is a quadratic expression with positive integral coefficient...

    Text Solution

    |

  17. I(1) = int(0)^(pi)(xsinx)/(1+cos^(2)x)dx, I(2) = int(0)^(pi)(x^(2)sin...

    Text Solution

    |

  18. Let L(1) = lim(xrarr0^(+)) (int(0)^(x^(2)) sinsqrt(t)dt)/(x-sinx), the...

    Text Solution

    |

  19. lim(nrarroo) ((1^(k)+2^(k)+3^(k)+"......"n^(k)))/((1^(2)+2^(2)+"....."...

    Text Solution

    |

  20. Let T(n) = sum(r=1)^(n) (n)/(r^(2)-2r.n+2n^(2)), S(n) = sum(r=0)^(n)(n...

    Text Solution

    |